
Food Swiping
DBM180 Report
Group 4
Ananya Mehrotra
Thomas Pilaet
Rick van Schie
Yunjia You
Yanyu Zheng

Table of Content

Introduction 1.
Conceptual design 1.
Data collection 7.
Data documentation 8.
Data mining 9.
Demonstrator 13.
Discussion and Conclusion 15.
References 16.
Appendix 17.

1.

Nowadays, the popularity of the Internet has shortened the
distance between people, followed by a consequence that
it is becoming easier to approach a diversity of information,
including food. Beyond meeting the basic physiological need
to feel satiety, the role of diet has been further explored and
linked to other aspects of life. The study of O’Neil et al. (2014)
highlighted that the dietary patterns and quality could not only
affect the physical conditions, but also be related to mental
health early in the life span. Moreover, adherence to one
specific diet, namely Mediterranean diet, has been found to
be positively correlated with subjective happiness, especially
in adolescents (Ferrer-Cascales et al., 2019). Therefore, how
to eat well both physically and mentally has become a topic of
more and more interest.

To develop an ideal personal diet, it is worthwhile to apply
artificial intelligence (AI), as this tool could give users control
to the most extent, as well as maintain high performance in
predicting user’s preference with a continually evolved model.
By collecting the right data and training the appropriate
model, there is a possibility that the most essential attribute on
which users make their decisions based could be found. Since
everyone is likely to have a unique appetite and the scenario
where the user has a meal could be various, the model would
be personalized and usage of the product is expected to be
more adaptive.

It could be the case that sometimes users do not even know
how they choose what to eat, but this time Food Swiping could
help. Inspired by the characteristics of advanced AI, the idea of
designing a cuisine recommendation application comes up. To
be more specific, this AI-based app Food Swiping is aimed at
offering dynamically personalized recipes to those who want
to explore different cuisines. Different from searching for a
preferred recipe aimlessly, users are able to pick from recipes
that the algorithm generates from their personal behavioural

Conceptual Design

Introduction patterns. Also this app is designed to be Plug&Play, in which way
users could enjoy cooking new recipes without spending more
time in learning to use a new app.

In the following report, the design process composed of
conceptual design, data collection, data documentation,
and data mining would be further explained, followed by the
demonstration and discussion of the result found through the
iterative prototype. (In the end, the promising prospect and
unique value of AI would be seen via this project. It indeed
provides more solutions in implementing domain-specific
technologies to the domain of design.)

This section details the inspiration, goal, user interface and user
experience of the app (Food Swiping), thus going deeper in
depth regarding the aesthetical prototype. Further, it details the
incentive for further work.

Inspiration: Benchmarking (tinder/tender)
Tender is geared toward young people who want to eat out less
and cook more. The app offers up food porn from all over the
Internet and lets you swipe right to save a recipe, and swipe
left to throw it away (Figure 1). It is more like Tinder for cooking
(Dulenko, 2019) (Figure 2). But “Tinder for Food’’ is a way
catchier headline. You can also filter results to your liking (options
include drinks, dessert, chicken, vegan, seafood, pork, beef, and
vegetarian, with more to come), and you can save recipes to your
“Cookbook” (Huen, 2015; Meilus, 2015;).

Based on the user reviews Tender has some shortcomings which
we as a team can use as a strength to improve it further and
incorporate it within the newly designed app. Firstly, while using
Tender most users found glitches with the app functionality.
Specifically for the filtering aspect. Secondly, Tender does not
seem to refine its suggestions based on the users likings and

2.

Behind the curtains a j48 algorithm provides personalized recipe
suggestions based on the personal profile and the time when you
use the app. From the user habits, it gains information about the
user’s specific preference, with respect to price, nutrition, dietary
category, preparation time and the time of using; higher accuracy
with feedback from users. Additionally, dishes that suit the prior
preference more will appear with higher possibility.

Figure 3: Features offered by Food Swiping

Adobe XD UI
To have both the conceptual design as well as an entirely working
app, the team decided to use Adobe XD for the conceptual
interface (aesthetic prototype) whereas Processing for the
working app (functional prototype).

Adobe XD facilitated the creation of a highly user friendly and
intuitive interface. Thus, an interactive conceptual interface
demonstrating the basic functionality and interactions which
the app offers to the user was created. Initially the user interface
of the existing food applications were referred to gain a deeper
understanding on the aesthetics, layout, user-flow and user-
friendliness while creating the conceptual design.

The initial version of the interface aimed at creating the basic
layout of the app with a simple but a highly user friendly workflow
incorporating all the functionalities as seen in figure 4.

rejections (Judkis, 2015).Therefore, with the introduction of our
app the team aimed to create a reliable system that is dynamic
to the user’s preferences.

Figure 1: Design inspiration - Tender

Figure 2: Design inspiration - Tinder

Goal of Food Swiping
Based on the inspirations, Food Swiping is geared towards
all people who want to explore different cuisines whilst also
keeping a healthy diet. The app offers recipes from all over the
world and lets you save, discard or immediately start cooking
a recipe. Thus, the main features of the app are seen in
figure 3.

3.

This version represented the basic pen-paper idea and it included the desired information which is required to be communicated to the user
through the app as seen in figure 4. Hence, the team aimed at gaining detailed feedback from the coaches and the fellow students whether
sufficient information is shared with the users through the app or not. The user-flow of the conceptual design can be seen here: https://xd.adobe.
com/view/fa4bb855-42d6-42ca-897f-744f4a930eb6-af18/

Figure 4: Initial version of the Concepual Interface

Based on the feedback from the coaches, the existing interface design was further improvised and converted into a more professional UI.
Therefore, the new version of the conceptual interface highly focussed on enhancing the styling, aesthetics and user-friendliness of the app.
Additionally, the user flow and the user experience was further enhanced during this version by integrating information in a highly visual manner
of the app as seen in figure 5. The user-flow of the conceptual design can be seen here: https://xd.adobe.com/view/b3ab8e4f-5c8f-4e18-a5c6-
3eefb45c153f-e6f8/

4.

Figure 3Figure 3

Figure 5: Final version of the Concepual Interface

5.

Goal of the Interface
The app aims to facilitate simple and basic user interactions
in order to facilitate a basic user flow. Thus, with the newly
improvised version of the conceptual design we aim to create
a neat and clear user interface. The app is designed to be
Plug&Play (or perhaps Click&Eat), therefore, no pre-training the
model and no extensive account is required. Additionally, instead
of comparing the recipes the app allows the users to choose their
favourite recipes from the accepatables ones.

User-flow
Two different user scenarios were created in order to create a user
friendly workflow for both first time users as well as for a standard
user.

First time use
This user scenario elaborates on the step by step workflow which
facilitates the first time downloading and installing procedure of
a new user as seen in figure 6. The user initially needs to download
Food Swippling from the app store, general dataset and the
general model. After that the user opens the app and creates a
personalised profile by adding in their name, gender, height,
weight and allergies (if any). Further, the system extends the
general dataset with personalized data, thus, asking the user to
interact with the system inorder to train it. This helps in retraining
the model to create a personalized model, therefore, this model
is then applied in processing to create a personalized behaviour.

Standard use
This user scenario elaborates on the step by step workflow of a
regular user when the user already has an account/profile created
in the app as seen in figure 7. Each time the user opens the app,
they have the ability to update their profile if neededby altering
their name, gender, height, weight and allergies. Each time the
user interacts with the app by going through piles of three recipes
helps/contributes in training and adding new data in the app.
Additionally, the user

User Experience

Figure 6: Final time use scenaio

Figure 7: Standard use scenaio

6.

has the opportunity to alter and personalize their recipe options
by using the filters anytime they wish to do so. The filters allow
the user to narrow down the recipe options based on the price,
calorie, easiness, dish type, dietary category, preparation time
and spiciness. Thus, the system updates itself based on the
new inputs and user behaviour, hence, would show the new
essential attributes to the users.

Data gathering interface: Processing Interface Design
Later in the report, the Demonstrator section elaborates on
the aesthetically basic, but otherwise completely functional
Processing design. It includes all the features and functionalities
that were envisioned for the app. Multiple Processing libraries
were used, namely ControlP5, OOCSI and Weka. The Processing
Interface design aims to collect and store data from different
users for data mining purposes. The collection, documentation
and mining process of this data will be described in the following
sections.

Collected data
Two datasets were created to support the design, namely IoT
dataset and entity dataset. The IoT dataset contains dynamic
data related to dish characteristics (e.g. price, spiciness, etc.)
and user preferences (e.g. choice) while the entity dataset
contains static data related to the users (e.g. BMI, gender, etc.).
The collected data is a mix of numerical and categorical data,
saved in Data Foundry. How the data is sent and saved on Data
Foundry will be elaborated in the Demonstrator section, and
how it is used for training and predicting will be elaborated in
the Data mining section.

The dish characteristic data in the IoT dataset includes dish
name, dish category (vegan, veggie, pescatarian, non-veggie),
type of dish (main dish, side dish, dessert, breakfast), ease
of preparation (super simple, fairly easy, average, hard),
preparation time, nutrition value, price and spiciness. These
data were included because of the assumption that users would

Data Collection

make their decisions based on certain characteristics that they
are interested in. Four out of these eight data are numerical
(i.e. preparation time, nutrition value, price, spiciness), the rest
four are categorical data. The price and spiciness are coded to
numerical data ranging from 1 to 3, with higher score representing
higher price or more spicy. The user preference data in the IoT
dataset refers to the choice (i.e. refresh, save, cook now) of the
users regarding each dish. This is the target prediction outcome
in data mining. When interacting with the processing interface,
the users click the “refresh” or “save” button on the list view page
to indicate that they do not like the dish or that they feel the dish
acceptable and want to cook it later. If they like a certain dish,
they can go to the detailed view page to see the ingredients and
procedures, and decide whether to cook it now or not (Figure X).
These clicking actions are archived as “choice” in the IoT dataset.
In fact, there was a numerical attribute storing the score of each
dish, which was discarded in the final model. It was calculated on
the basis of the user’s choices. The higher the score, the more the
user prefers that dish.

Contextual data such as day of the week and time were collected
in the earlier stage. They were included for the reason that the
time of using might influence which type of dish the user wanted
to eat. However, they were discarded later as there was not
much contribution.

As for the entity dataset, it stored the personal data of each user
including height, weight, BMI, continent, gender and age. All
these data were collected on the login page, except that BMI was
automatically calculated from the user height and weight. These
static data were used to train a general model that gave rough
results for the first-time users.

Iterative collecting process
All the five students from the team and the fellow students from
the same course contributed in data collection by using the
processing interface.

7.

In the first round of data collection, each team member spent
nearly 10 minutes every day interacting with the processing
interface, lasting for around one and a half weeks, so that there
was enough data (at least 400 instances per person) for the
exploration into different data mining methods. In this stage,
the prior aim was to expand the dataset as much as possible, so
some choices were quite random (excluded from the training
set later). The choices, scores, as well as contextual data were
collected via the interaction.

Next, in order to find out the most suitable data mining
method, the data was collected in a more serious manner,
with underlying patterns (around 700 instances). The choices
were based on price or price and nutrition value. The score and
contextual data were discarded to simplify the dataset and the
predicting method, or to say, only recipe-related data (dish
characteristics) and choices were collected and stored.

After having the model with the best performance (J48), more
data were collected to confirm the decision and fine tune
the parameters of the model. Two members interacted with
the interface everyday for a week to collect more data, now
with personal data included which were height, weight, BMI
and gender. The choices were mainly based on dish category
or nutrition value and preparation time. In this period they
gathered around 800 instances in total. Later, continents
of origin and age were added to the personal data. Hereby
hopefully a general model can be trained to predict from
personal data for first-time users.

At last, to make the general model work, 5 people from different
backgrounds (our team members and fellow students) were
invited to help with the data collection. Each of them were
asked to spend around 10 minutes (around 100 instances per
person). Another fellow student was invited to experience
the interface, whose data were then used as the test set (153
instances).

Data Documentation
As mentioned in the Data Collection section, an integrated IoT
dataset was created for the system. This was done by merging
an already existing dataset along with some added attributes
required for developing an intelligent system.

Findability
Most of the recipe attributes are gained from an open online
recipe database of Airtable (Sayers, L., & Sayers, C., 2018).
Besides, missing information and other relevant attributes that
the initial data repository does not contain are manually added.
According to the required ingredients, the team members
classified all the dishes into different dietary categories and
subjectively evaluated the spiciness range of each dish. Elaborate
information about the recipe dataset could be found in the csv
file named RecipeDatabase.

Accessibility
To store, process and export data in an easy and structured
way, the Data Foundry platform is introduced. In principle,
Data Foundry only allows private or team internal access to the
dataset. For this project, all data were collected from members
of this team and some other teams in this course. Once logging
in the data gathering interface, it would be automated to archive
raw data in the Data Foundry platform under the license MIT.
It is also possible to get open access to the data that are used
for training via another csv file named Data_ALL_withDishes on
Canvas.

Interoperability
Using the csv format to archive raw data has the advantage
that data could be easily added, deleted, and reprocessed (add,
subtract, multiply, and divide, etc.). All the numeric values of
cells belonging to the same attributes are documented in unified
units, thus allowing comparison between different recipes. Some
continuous attributes are even transformed into attributes with
number or symbol coding scheme.

8.

For example, the attribute Price has been divided into three
intervals using the euro symbol, from cheap to expensive. In
this way, it would be easier to obtain an intuitive grasp of the
meaning behind the data.

Reusability
The initial dataset contains both recipe attributes and user
attributes to better describe what we are likely to use for
training the model. Most attributes are built in the existing
recipe dataset, while other additional attributes are well
defined in the Wikipedia, meeting domain-relevant community
standards.

Attribute selection
In this subsection several iterations in our data mining process
are described in terms of attribute selection. These were not
hard separable iterations as described below, but instead
overlapped in some cases. However, to improve readability
they have been categorized in three different iterations.

First iteration
The initial idea was that through data collection of both
personal and contextual attributes a model could be created
fitted to each individual user. The personal attributes at that
time only consisted of recipe attributes combined with an
action (cook, save or refresh). As mentioned in the Data
documentation section the recipe attributes in part came from
Airtable (Sayers, L., & Sayers, C., 2018). However, more recipe
attributes were also added manually. In the beginning no user
attributes were collected. After data was collected from a
user’s interaction with the data gathering interface, two class
attributes were saved. One being the choice of the user for
each dish (cook, save or refresh) and the other being the score
for each dish over time. The idea was that we could see what
the score of each dish was over multiple interactions of the
same user. An overview of all attributes used for data mining
at this point can be seen in Table ??.

Data Mining
Second iteration
At first, the “score system” was adopted to represent the user’s
preference for each dish over time. Therefore, the algorithm’s
task was to predict the score of each dish. The idea was that
all recipes would be placed in a ‘stack of cards’. The higher the
score, the higher the recipe would be in that stack. In terms of
the interface a recipe would be shown more quickly if it had a
high position in the stack. After a first round of data collection
an attempt was made to explore what classifier(s) could best be
used to find patterns in the data. The classifiers were trained with
all the shown attributes in Table ??. Through ZeroR the baseline
was set at an accuracy of around sixty percent. However, none of
the classifiers that were tried, gave satisfying accuracy ratings.
Weka classifiers such as OneR, NaïveBayes, Logistic Regression
and J48 all gave lower or only slightly (a few percentage points)
higher accuracies. For this reason it was not possible to conclude
which classifier(s) could best be used for finding patterns.

In any case we saw that the contextual attributes did not give
any insightful information. The reason for this was that data
from a single person was collected in large amounts during only
sporadic and irregular intervals. Initially it was planned that a
user would use the data gathering interface as they would do
in reality. For example, use it during each morning to select
what to eat for breakfast. However, due to time constraints of
all group members (the users) this was not possible. Instead,
an individual user would use the data gathering interface a few

9.

times per week and collect much data at once. With that the
three choices connected to a recipe became in essence a rating
system with ‘Cook now’ being the highest rating. Concluding,
the data on the contextual attributes - for example the current
hour and day of the week - did not give insightful patterns. For
this reason it was decided to leave out the contextual data
altogether for future data mining processes.

Moreover, it was found that the scoring system did not give
insightful results either. Different scores for each individual
dish were saved over time, but (maybe logically) did not lead
to any patterns. Besides, the scoring system was also hard
to implement adequately in the data gathering interface
in Processing. For these two reasons it was decided to drop
the scoring system and only use the individual choices each
user gave to a recipe. With that the class attribute was only
connected to an individual instance (recipe) instead of over
multiple instances (recipes) over time.

Third iteration
After some rounds of data collection and mining it was also
found that the recipe attributes did not indicate much about
what the taste of the dish was. Several ideas emerged of how
to indicate this. One idea was to add an attribute through which
the most important ingredients were indicated. Implementing
this would lead to a good indication of what the dish could
taste like. However, it would also be very time-consuming and
hard to implement, because a framework would need to be
made with matching major ingredients for over 140 recipes.
Another idea that emerged was to indicate which cuisine
the dish belonged to. However, when this was looked into it
was found that many possible cuisines existed and that some
cuisines only had one recipe in our database that belonged
to them. Instead of using the major ingredients or cuisine of
a dish we chose to add a Spiciness attribute. This attribute
was separated in three categories (Not Spicy, Mild and Hot).
Adding this attribute was easy to do.

Next to that the taste indication was missing, we also noticed
that we lacked user attributes in our data gathering. Actually
none at all were gathered in the beginning. It was chosen to add
such attributes as we imagined that for example the BMI of a user
could preemptively indicate their preference for the nutritional
value of a recipe. For this reason first the following user attributes
were added: weight, height, gender and age. These attributes
were used separately in the data mining process and weight and
height were also used to calculate the user’s BMI. Which too was
added as an attribute in the data mining process. This seemingly
could lead to an overrepresentation of weight and height, but
this is not the case. Firstly, because the classifiers that we use
do not use all attributes in their decision making necessarily
(such as J48). Secondly, before a model was trained some user
attributes were also filtered out, which will be explained in the
‘Model analysis’ section.

Later the attribute “Continent of origin” was also added. We
imagined that this perhaps preemptively could indicate some
taste preferences of the user. This was the final attribute that
was added. With that the final overview of the used attributes
can be seen in Table ??.

Model analysis
To find an indication what classifier could best be used for the
data mining process personas were created. To do this two
personas were created. One persona would only rate the recipes
based on their price and the other persona only on their price and
nutritional value. For the former, 266 instances were collected
and for the latter 422 instances. The classifier accuracies for each
persona can be found in figure 8. Ten fold cross-validation was
performed for each classifier. The table shows that from this
‘persona test’ J48 was the most accurate classifier. However,
many limitations are connected with finding a useful classifier
through personas. Such personas are not valid ‘end-users’. The
next step was to find what classifier would be most accurate when
trained on the data of actual users. Three different users were
selected from the then existing database we had. A separate csv

10.

file was created for each which was then cleaned for training.
This user data was trained with the same classifiers that were
used for the personas. The user attributes were left out for
this training as they had no added value, because they were
the same for the individual users. The classifier accuracies for
each of the three users can be found in figure 9. For two users
all used classifiers were more accurate than the baseline with
J48 again the most accurate. However, for ‘User 3’ no pattern
could be found. Therefore none of the classifiers outperformed
the baseline. The most likely cause for this was that this user
filled in their recipe ratings randomly compared to the other
two users who had rated the recipes in a more valid manner.

It now became clearer that J48 most likely was the classifier to
go with to use in our model. For this reason a preliminary search
was done on finding what J48 parameters to use in Weka. To
do this, each parameter was changed separately to look at its
effect on the accuracy of the model. From this it was found
that none of these changes increased the accuracy. With the
exception of when the subTreeRaising parameter was turned
to false. This led to a very slight accuracy increase of around 0,2
percent point. The minNumObj parameter was also raised to
higher values. This thus did not lead to higher accuracies, but
neither led to much lower accuracy percentages immediately.
For example the accuracy of the J48 model was still similar
for values such as 2 and 50. For example for ‘User 1’ this led
to accuracy percentages of 84,37% and 80,97% respectively.
However, when the minNumObj parameter would be raised

even higher it did lead to lower accuracies as the decision tree
would be downscaled too much. In any case this showed that
making the J48 model less complex would still lead to similar
accuracy percentages and could therefore be advantageous. An
advantage is for example that the model can better be upscaled
to a more complex one in the future.

Figure 9: Table representing classifier accuracies for each of the three
users

The next step in the data mining process was to attempt to
create a model that could encompass all user data at once. For
this the same classifiers were tested again. Besides the 10-fold
cross validation a test was also conducted with a test set. This
test set was from a person from the course whose data has not
been used in the training process. 153 instances were collected
for this test set. However, the ratio between the choices of this
person greatly differed from the ratios of the training set. The
‘refresh’ rate in the test set was over 76 percent of the total 153
instances. While in the training set the ‘refresh’ rate was only 61
percent. Therefore, a ‘balanced’ test set was made in which the
refresh rate was similar to that of the training set. This was done
to get a more balanced comparison between the training and
test. The balanced test set was created by randomly deleting
instances in which the user had selected refresh. From this, a
test set was created of 94 instances and a refresh rate of just
under 62 percent.

The accuracy of the classifiers was tested with all attributes
and also with only the recipe attributes. The latter was done
as well, because after some data mining it was noticed that

Figure 8: Table representing classifier accuracies for each persona

11.

this increased the accuracy of the model when a test was
performed with a test set. This indicates that by using the user
data that we currently have the model is overfitted to those
users. In figure 10 and in figure 11, the classifier accuracies are
shown for both test sets.

Figure 10: Table representing classifier accuracies using all attributes

Figure 11: Table representing classifier accuracies with no user attributes

Looking at the accuracies of all classifiers for the model of all
users we see that J48 still outperforms all other classifiers. With
the exception of when the decision tree is overfitted through
the usage of the user attributes. For this reason we stuck with
using J48 as the classifier to use for creating our model. The
next step was to see which user attributes could lead to more
insights for creating the general model with at the same time
not overfitting. The results from this selection process can
be seen in figure 12. As shown in this table the same pattern
is visible from the previous accuracy test. When using the

user attributes a higher classifier accuracy is found with cross
validation, but (much) lower accuracies are found when testing
with the test set. Again this shows that by using the current user
attributes the model might be overfitted to that data.

Besides attribute selection, the J48 parameters were also
looked at. As with previous attempts this again showed little
improvement in the classifier accuracies. Raising the minNumObj
parameter led to the greatest improvement in accuracy. This too
was only limited to a few percentage points, which is also an
indication that the model can be created simpler without leading
to lower accuracies. Even raising that parameter to 200 still led
to similar accuracies.

Figure 12: Table representing the accuracy test

Data mining conclusions
From the above attribute selection and model analysis several
conclusions can be taken from the creation of our general
model. The main conclusion is that currently with our dataset
and including attributes it is difficult a general model that
performs well. The general J48 models that we have tested do
not outperform the baseline by much or in some cases not all.
Moreover we see that by using the current user data and the
including attributes the model is overfitted to that user data.
This is most likely caused by our limited user variation. For the
creation of a more accurate model, data is needed from a more

12.

diverse user base. Currently, the decision tree overfits the
data to the limited user base. Even when the minNumObj
parameter is raised or when most user attributes are removed.
Examples of our limited user base are that we only had one
male from Asia, only one person above 180 centimeters and
all people were of ages 22 or 23. However, what needs to be
said is that after deployment our general model adapts itself
to the individual user. Currently, the model is trained with the
default dataset and has not adapted itself to its user (or in our
model analysis the user from the test set). This means that the
starting accuracy may be low, but it will improve over time.

Final remarks on using J48 as classifier
Throughout the data mining process the J48 classifier was most
accurate in most cases. For that reason we could keep using
J48 as the classifier for the creation of our model. However,
another important reason needs to be mentioned. In our
application we also wanted to show what recipe attribute was
the most important for the user when rating the recipes. To do
this it needed to be known what the user looks at first when
rating the recipes. This was most best, if not only, possible in
Processing by using the J48 classifier. In processing we could
find the first node of the decision tree quite easily, but it was
much more difficult to find the most important recipe attribute
for other classifiers. Moreover, J48 is also an unstable learning
scheme and could adapt itself therefore more easily through
an individual user’s preferences. Where other classifiers use
all recipe attributes from the get go, J48 only uses the recipe
attributes that are important to the user’s preferences. With
that through usage of the application a user might end up with
a completely different decision tree compared to the decision
tree of the general model that we would have created.

The final demonstrator of this project is actually a combination
of an aesthetical and functional prototype. The aesthetical
prototype is already described in the concept section and
includes the aimed user experience and styling. This section

will go into more depth about the functional prototype (see
figure 13), which uses the aesthetical prototype as a guideline
for the layout. A demo of the functional prototype can be found
here: [video link to demo interface].

Figure 13: Functional prototype created using Processing

Limited user experience
Note that the functional interface does not meet the experience
qualities that the overall concept is aiming for, e.g. clicking the
“cook” button on the detailed screen will bring you back to list
view instantly and refresh the dish. This would not be desired in
a real situation, as you may still want to access the recipe details.
The reason for these shortcomings is twofold.

Firstly, simplicity. The purpose of the functional interface is the
implementation of the algorithm to make a working prototype
first, and afterwards make it aesthetically pleasing.

Secondly, reliability of the training data. If the dish would not be
reassigned, it could be clicked more than once in a row, creating
duplicate instances in the dataset, or, if the user goes back to
the list view and clicks refresh, an additional instance would be
added with the “refresh” label, which contrasts with the desired
“cook” label. Ultimately, this would make the training data very
unreliable. Another approach to prevent this issue from arising

Demonstrator

13

would be to remove the cook button once it is clicked, and
ignore that dish when the page is refreshed. Though, this
would be more difficult to implement (see point 1).

Code foundation
The functional prototype is an interface made in Processing. As
a starting point, the provided example code by Chiang (2020)
was used and expanded over the duration of the project. This
code already included some main interface elements from the
ControlP5 library and a connection to DataFoundry by means
of the OOCSI library.

Additionally, the J48 example code by Hu (2020) was used
to implement the J48 algorithm of the Weka library into
the interface. This code was modified to fit the structure
of the dataset and extract additional information like the
most essential attribute by accessing the top node of the
decision tree. This attribute is used for personalization of the
interface (currently limited to highlighting the attribute with
a unique color, see figure 14) and transparency regarding the
algorithm’s decision making.

Figure 14: highlighted personalized most essential attribute: price and
calories

Loading dishes
During the startup of the program, a connection to an Iot dataset
and Entity dataset on DataFoundry is made using the OOCSI
library. The J48 model is loaded to make predictions about dish
choices. The recipe dataset is loaded including the attributes of
all individual dishes. And the interface control elements from
the ControlP5 library are loaded and the elements for the first
window are shown. The shown interface elements are based on
a finite state machine that displays the elements based on one of
three states: login, list view and detailed view.

The user logs in using very basic personal information including
name, weight, height, age, gender and continent of growing
up. There are two reasons for asking for rather basic personal
information. Firstly, it makes starting to use the app less
burdensome. Secondly, it allows us to build a more complete
dataset for training a model. Asking for a choice between every
country would make finding patterns much more difficult with
limited training data.

As soon as the user goes to the list view (after logging in), the
list of recipes is accessed using the “assignRandomDishes()”
function from which three random dishes and their attributes
are loaded into the 2D String array “randomDishes[][]”. The first
index represents one of the three dishes that are displayed on
the interface, and the second index holds all of the attributes of
those three individual dishes.

Predicting preferences
The algorithm is used to predict whether the selected random
dish will actually be cooked, which is the desired result of the
app. If the selected random dish results in the prediction “cook”,
it will be kept, otherwise another random dish is selected.

To give false-negative predictions (i.e. not predicted to be cooked,
while the user would actually cook the dish) a chance to present
themselves to the user, the number of assignment iterations is
limited. The higher the allowed number of iterations, the higher

14.

the chance of getting dishes with a “cook” prediction. The
downside of a higher number of iterations is the loading time,
although ten iterations per dish (i.e. max 30 in total) still feel
quite snappy from a user perspective. Thirdly, the limit on
the iterations prevents an infinite loop through dishes, may it
ever happen that the algorithm cannot find any dishes with
the prediction “cook”. Note that keeping the iteration value at
one results in no effect of the algorithm, since the prediction
outcome cannot induce another iteration. This setting is used
to collect the initial training data. Also, iterating over the
length of the recipe dataset, while skipping duplicate random
values, will ensure three “cook” predictions, if that is possible.

Sending data
Once a button has been clicked that is linked to submitting data
(i.e. “cook”, “save” or “refresh”), the whole set of attributes is
sent to the IoT dataset and the personal profile is updated in
the Entity dataset. The cooked or saved dish will be reassigned
according to the aforementioned steps. In case refresh was
clicked, all three dishes will be reassigned.

Accessing data
The current interface does not automatically use the sent data
from either of the datasets. By manually replacing the default
dataset in the data folder of Processing with a dataset that
includes personal data, the effect of personalisation by means
of the J48 algorithm can be mimicked.

However, the idea is that at a certain interval (e.g. every 100
new data points or every week), the newest personal dataset
is accessed from DataFoundry (by filtering on personal details
from the login screen) or local storage which is used to retrain
the model. In theory, the interval would not be necessary,
but in practise that would mean every time a new instance is
appended, the model would be retrained, which would over
time harm the speed of the application when the size of the
dataset grows too big.

Personalisation
The newest dataset would include a default training set that is
used to initially train the model, so it can be used without having
to train it first, and a personal extension of that dataset (the
feedback loop). Over time, most of the data will be personal,
making the resulting model also increasingly personal and
should therefore increase the accuracy of the predictions as well.

Since each user will have a unique dataset, they will also have
a unique model. Especially since J48 has an unstable learning
scheme. This gives different attributes the possibility of
becoming more important, and could also change the top node
of the model, i.e. the highlighted most essential attribute.

Limitations
Up to now, there remain some limitations in the personalized
model. Firstly, the accuracies for the test set are still lower than
it is expected, with only a 50,33% correct rate using all the recipe
attributes and user attributes in the general J48 model. However,
the idea is that the general model personalizes itself through
the usage of the app. If the duration and frequency of using the
app are guaranteed enough, the latest model will theoretically
perform better than the original one.

Moreover, due to the limited variation in the user sample, a
problem of overfitting arises in the case of adding the user
attributes to the training process. It also leads to low accuracies
when testing with the test dataset. In order to obtain a general
model that can better fit different types of users, a more
diversified user group will be needed to train the model at the
very beginning.

Recap of results
Whilst in the end the accuracy of our J48 model is not staggering,
it was pleasing, since the J48 still performs better than the ZeroR
in the case that the user attributes are not included. Considering

Discussion and Conclusion

15.

the inclusion of the user attributes leads to overfitting, future
work should focus on avoiding such a problem.

As it is mentioned in the Demonstrator section, at the end of
the course our prototype has basically possessed the ability to
recommend preferred dishes based on a dynamically updating
model. It is expected that each user will have a unique model
only extracting the most essential attributes for them, thus
making the recommendation more personalized.

In conclusion, more value of the AI tool will be seen via this
project. It indeed provides more solutions in implementing
domain-specific technologies to the domain of design.

Future work
Regarding the further refinement, there is some future work
that needs to be done. Firstly, the conceptual design should
be linked to the processing interface to associate aesthetic
consideration with the functional section. Secondly, given
that there is still room for developing the current conceptual
design, more research on app design should be launched.
Thirdly, since the personalized model will be constantly trained
with the personal dataset, it is also of importance to focus on
how to automate this procedure. Otherwise, it would be the
case that every time the datasets are updated, the algorithm
has to be manually adjusted by operators. Fourthly, in order to
optimize the model performance, especially in testing session,
more concise datasets in terms of the number of instances are
needed. Also the dataset should be more broad in terms of user
variation. Fifthly, research needs to be done on how to best
create the general model using general datasets. The trade-
off problem remains to be solved that we do not maintain the
validity of user attributes as well as the conciseness of general
datasets. Lastly, during the data mining process it was found
that raising the minNumObj parameter, which simplifies the
J48 model, did not lead to lower accuracy. Therefore for the
creation of a general model this could be applied in the future.

Catalina, J. (2020, December 09). Colorful Fruits. Free
PowerPoint Template & Google Slides Theme. Retrieved
January 25, 2021, from https://www.slidescarnival.com/
aumerle-free-presentation-template/2571

Dulenko, V. (2019, August 10). How Tinder Design Hooks You
Up. Retrieved January 25, 2021, from https://uxplanet.org/how-
tinder-design-hooks-you-up-60201d78501f

Ferrer-Cascales, R., Albaladejo-Blázquez, N., Ruiz-Robledillo, N.,
Clement-Carbonell, V., Sánchez-Sansegundo, M., & Zaragoza-
Martí, A. (2019). Higher adherence to the mediterranean diet is
related to more subjective happiness in adolescents: The role
of health-related quality of life. Nutrients, 11(3). https://doi.
org/10.3390/nu11030698

Huen, E. (2015, July 30). Get Tender, the Tinder-Inspired App
for Food. Retrieved January 25, 2021, from https://www.forbes.
com/sites/eustaciahuen/2015/07/30/get-tender-the-tinder-
inspired-app-for-food/

Judkis, M. (2015, October 08). Tender is Tinder for recipes, but
with similarly disappointing choices. Retrieved January 26, 2021,
from https://www.washingtonpost.com/lifestyle/magazine/
tender-is-tinder-for-recipes-but-with-similarly-disappointing-
choices/2015/09/24/1f308df8-51c4-11e5-8c19-0b6825aa4a3a_
story.html

Meilus, L. (2015, July 20). Inevitably, the Tinder for Food Has
Arrived. Retrieved January 25, 2021, from https://www.thrillist.
com/eat/nation/tender-app-tinder-for-food-is-finally-here

O’Neil, A., Quirk, S. E., Housden, S., Brennan, S. L., Williams,
L. J., Pasco, J. A., Berk, M., & Jacka, F. N. (2014, October 1).
Relationship between diet and mental health in children and

References

16

adolescents: A systematic review. American Journal of Public
Health. American Public Health Association Inc. https://doi.
org/10.2105/AJPH.2014.302110

Sayers, L., & Sayers, C. (2018). Recipe Database - Airtable
Universe. Retrieved January 25, 2021, from https://airtable.
com/universe/expHZcS7kWEyq5gUH/recipe-database

Appendix A: Processing Code and Datasets - See ZIP
file (DBM180_group4_interface)
The processing folder contains the following files:
- Code
- Recipe dataset
- Biased datasets for testing the algorithm’s adaptivity
- Default training dataset as a result from data mining
- Images + image references

Appendix B: Informed Consent

Appendix

17.

